S. GELLER

{Ca₃}[Zr_{1+x}Co_{1-x}](Co_xGe_{3-x})O₁₂. The garnet REINEN claims to have made has x = 1.00 and has a lattice constant of 12.62 Å. Our specime: with an attempted x = 1.00 is not single phase; the garnet present has $a = 12.619 \pm 0.002$ Å. We have made several other specimens

x = 0.00	a = 12.528 Å
0.20	12.557
0.40	12.588
0.60	12.619.

Note that with x = 0.60, that is for $\{Ca_3\}[Zr_{1,6}Co_{0,4}](Co_{0,6}Ge_{2,4})O_{11}$ the lattice constant is the same as for the garnet phase present is the specimen attempted with x = 1.00 and also equal to the valuobtained by REINEN. Further, even the specimen with x = 0.60 is not quite single phase. However, maximum x in this system is vernear 0.60. So that even in this system, Co^{2+} does not show a preferenfor tetrahedral sites. That is, it does not seem possible to force morthan $60^{\circ}/_{0}$ of the Co^{2+} into these sites.

REINEN also bases some of his claim on the observation that is the {Ca₃}Me⁴⁺Co²⁺Ge₃O₁₂ garnets, many Ge⁴⁺ ions are in ocatahedra sites while many Co²⁺ ions are in tetrahedral sites. (This is required if Co²⁺ ions are to be in tetrahedral sites, else the crystals would be of a complex vacancy type.) Now in our 1960 paper⁴³ we did not, of course, rule out the possibility that some of the Co²⁺ ions did go into tetrahedral sites in the garnets discussed in that paper, but we said that they were few and I still think so.

In a paper, overlooked by REINEN, it was shown by PAPPALARDO WOOD and LINARES⁹⁹ that the tetrahedrally coordinated Co^{2+} io has much stronger absorption than the octahedral Co^{2+} ion. In fact that paper points out the discussions that those authors had with me Our differences were resolved by just the point mentioned⁹⁹: it i possible by optical spectroscopy to observe very small amounts C tetrahedral Co^{2+} ion, but even large amounts of octahedral Co^{2+} io in the presence of very small amounts of tetrahedral Co^{2+} io are no observable by this technique. The oscillator strengths of tetrahedral Co^{2+} appear to be between about two and three orders of magnitud larger than those of octahedral Co^{2+} . This appears to be the case for

 Ni^{2+} also¹⁰⁰ and possibly accounts for REINEN's conclusions about Ni^{2+} ion in the garnets. In this case also, there is evidence^{55,100} that very few Ni²⁺ ions enter tetrahedral sites in the garnets (see below). In the paper by PAPPALARDO, WOOD and LINARES¹⁰⁰, they show that Ni^{2+} doped yttrium gallium garnets contain *only* octahedrally coordinated Ni²⁺ ions.

With regard to REINEN's results concerning the effect of temperature on distribution, if the tetrahedral site occupancy by Co^{2+} ions is low, a small absolute change will result in a high-percentage change in the tetrahedral sites. It is this percentage change that is seen in REINEN'S Fig.12. Thus, REINEN'S results on Ca₃ZrCoGe₃O₁₂ imply only a small amount of Co²⁺ ion in tetrahedral sites. We have also fired our specimen of {Ca₃}ZrCoGe₃O₁₂ at three different temperatures: 1320°C (in air), 1190 and 1125°C in N₂. Contrary to REINEN's findings, the lattice constant was unchanged by these heat treatments. Also we saw no reddish gray color; the specimen fired at 1125°C has a light blue-gray color.

I may also point out that in a paramagnetic resonance study of Co^{2+} ion in yttrium gallium garnet by CHAMBERLAIN and COOPER¹⁰¹, no spectrum was observed having the S_4 symmetry for the tetrahedral sites; only a spectrum with the C_{3i} symmetry of the *a* sites was observed. This does not mean that there were no Co^{2+} ions in the tetrahedral sites of their YGa garnet specimen, just as the observation that the optical spectrum comes only from the tetrahedral Co^{2+} ions in YGa garnet.

In the magnetic studies of the $\{Y_3\}Co_xFe_{5-2x}Si_xO_{12}$ and $\{Y_3\}Co_xFe_{5-2x}Ge_xO_{12}$ systems⁹⁷, we arrived at a good accounting for the observed results through application of the model⁷ mentioned earlier and results obtained⁵⁵ on ther divalent ion substituted yttrium iron garnets. In the first system, that is, the one in which the Co²⁺ ion was compensated by Si⁴⁺, samples with $0.10 \le x \le 1.00$ were prepared, while for the system with Ge⁴⁺ ion compensation, specimens with $0.20 \le x \le 2.50$ were prepared. Our conclusion was: when $0.20 \le x \le 2.20$, $20^{0}/_{0}$ of the Co²⁺ ions were in tetrahedral sites. This demonstrates further the preference of Co²⁺ ions for the octahedral

38

⁹⁹ R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., Optical absorption study of Co-doped oxide systems. II. J. Chem. Physics 35 (1961) 2041-205

¹⁰⁰ R. PAPPALARDO, D. L. WOOD and R. C. LINARES, JR., Optical absorption ¹⁰⁰ etra of Ni-doped oxide systems. I. J. Chem. Physics 35 (1961) 1460-1478. ¹⁰¹ J. R. CHAMBERLAIN and R. W. COOPER, Paramagnetic resonance in ¹⁰¹ D. R. CHAMBERLAIN and R. W. COOPER, Paramagnetic resonance in

Strium gallium garnet: Co²⁺ and Mn²⁺. Proc. Physic. Soc. [London] 87 (1966) 367-970.